Curve Skeletonization in Continuous domain for Meshes and Point Clouds

Jai Bardhan
TCS Research

jai.bardhan@cvut.cz

(b)

Meshes

(a) (c)

Ramya Hebbalaguppe
TCS Research

ramya.hebbalaguppeltcs.com

Aravind Udupa
IIT Delhi

ara.udupa@gmail.com

Point Clouds

(d)

Figure 1. Representative results of the proposed CSCD on diverse 3D shapes from various benchmark datasets - Meshes (left) and
Point Clouds (right): (a) We show the result of our method on the neptune mesh — The inset illustrates the excellent skeletal quality
for both the hand and the trident; (b) We show a comparison of CSCD to a contemporary method (LS [2]) for Copper-key — CSCD
reconstructs the holes of the shape better; (c) CSCD captures fine details in complex meshes like xy zrgb—dragon (Stanford Library) and
TID:133568 (ThingilOk); (d) Our framework generalizes across domains, performing well on point clouds such as bob, armadillo,

and the intricate dead tree. See Appendix H for more results.

Abstract

Advancements in 3D curve skeletonization are accelerat-
ing progress across a wide range of applications. However,
developing robust skeletonization algorithms that capture
intricate object details remains challenging. Skeletoniza-
tion via Local Separators (LS) offers an efficient graph-
based approach but suffers from representation inaccura-
cies due to its discrete nature. To address this, we introduce
CSCD, a novel framework for Curve Skeletonization in the
Continuous Domain, generalizing LS to manifolds. Specifi-
cally, we present two realizations: CSCD-M for meshes and
CSCD-PC for point clouds. CSCD-M leverages the intrin-
sic triangulation of a mesh for resilience to noise and im-
proved topological preservation, while CSCD-PC employs
tufted Laplacians for enhanced robustness. To our knowl-
edge, CSCD-M is the first intrinsic method for curve skele-
tonization. Our results show CSCD-M matches LS perfor-
mance across diverse meshes and outperforms LS (TOG’21)
on benchmarks like ThingilOk dataset. CSCD-PC qual-

itatively outperforms CoverageAxis++ (Eurographics’24)
and EPCS (CAG’23). Finally, we demonstrate the efficacy
of CSCD in a few downstream tasks: object classification,
shape segmentation, identifying handles, tunnels, and con-
strictions in objects.

Project Website: https://cscd-skel.pages.dev

1. Introduction

3D object representation is a fundamental problem in com-
puter graphics/ vision, as it aims to capture the shape, struc-
ture, and appearance of objects in a digital format. Var-
ious representations have been developed over the years,
each with strengths and limitations. Meshes [48, 51], point
clouds, distance fields [20], and recently NeRFs [15, 32]
are commonly used for geometry processing. These repre-
sentations, however, can be detailed or complex for certain
applications, especially in shape and motion modeling.
Curve skeletons have emerged as a powerful alterna-

https://cscd-skel.pages.dev

tive. They capture the topology and geometry of the ob-
ject through a set of 1-D connected curves that lie in the
medial axis of the object and approximate key geometri-
cal features. Curve skeletons are invaluable for a multitude
of applications including shape segmentation [36], match-
ing [17], retrieval [43], animation [29], reconstruction [13].

Challenges in curve skeletonization: Despite their util-
ity, the computation of curve skeletons is fraught with chal-
lenges, necessitating algorithms that are both robust and
sensitive to nuances such as capturing fine-grained shapes
and structure [36, 47]. There is a lack of a clear defini-
tion of curve skeletons for 3D objects. This has led to a
multitude of hand-crafted methods, each with its strengths
and weaknesses. Most of these methods rely on the idea
that for tubular shapes, there exists a 1D structure that pre-
serves the shape of the topology. Among them: (1) geo-
metric features-based methods rely on identifying key ge-
ometric features of the shape, but struggle with complex
shapes or noisy data; (2) local decimation methods progres-
sively simplify the objects while maintaining the topologi-
cal structure, but generally fail to capture the high fidelity
features; (3) division based methods divide the shape into
regions, and compute skeleton points for these regions; (4)
learning based methods like [25, 57] use machine learning
techniques to generate skeletons, but usually fail to gen-
eralize to unseen objects, and (5) Medial Axis Transform
based methods identify the medial axis/plane and prune to
obtain the curve skeletons. Representative works include:
[1,5,6,8, 11,12, 23, 24,27, 33, 35, 46, 52, 53]. Recently,
a skeletonization technique based on local separators (LS)
[2] has shown particular promise to produce curve skele-
tons with higher fidelity, capturing the finer details of the
shape, where methods such as MCF [46] and L;-medial
skeletonization [18] sometimes fall short. The LS method
works by constructing local separators on graphs to divide
the graph locally into non-overlapping regions, then calcu-
lating the centroid for each region to form the nodes of the
skeleton. We summarize the native domain (representation)
of operation for a few methods in Tab. 1. We want to take
note that while point cloud/graph based methods may be ap-
plied to meshes, they are not natively developed for meshes
and therefore miss out face-level information available.

Although the LS method achieves strong results, it is
limited by its discrete representation, which can produce
noisy curve skeletons and sensitivity to input quality (e.g.,
poorly triangulated meshes or noisy point clouds). More-
over, the absence of a continuous formulation hinders its
applicability to continuous manifolds and restricts integra-
tion with representation-specific algorithms (Sec. 2.4).

Motivated by high-quality results in [2] and the need to
address the limitations, we introduce CSCD, a novel frame-
work for Curve Skeletonization in the Continuous Domain,
generalizing LS to manifolds (see Fig. 2).

Figure 2. CSCD Framework Overview: Our framework gen-
eralizes LS [2], such that a graph-based realization results in an
algorithm similar to LS (Appendix K.1), mesh-based realization
leads to CSCD-M, and a point cloud realization leads to CSCD-PC
(Sec. 3).

Method | Graph | Mesh | Point Cloud
LS [2] v X X
MSLS [3] v/ X X
ROSA [45] X X v
MCEF [46] X v X
EPCS [23] X X v
CA++ [12, 53] X v v

CSCD (Ours) | v/ (App. K.1) | /CSCD-M | v/CSCD-PC

Table 1. Native representations for various curve skeletonization
algorithms. CSCD enables construction of skeletonization algo-
rithms tailored to each representation.

Rationale for CSCD: CSCD operates on manifolds rather
than discrete structures like graphs, offering advantages
for 3D shape analysis, particularly of surface and geomet-
ric features [21, 44, 49]. (1) As continuous representa-
tions, manifolds more accurately capture intrinsic geometry
and topology (e.g., curvature, geodesic distances), whereas
graph discretization can distort these properties. (2) CSCD
leverages differential geometry tools such as the Laplace-
Beltrami operator and intrinsic vector fields, which are ro-
bust to non-rigid deformations. By using domain specific
implementations, we can reduce discretization artefacts that
are present in graph-based methods approximations.
Our key contributions include:

(1) We introduce the CSCD framework, a generalization
of the LS algorithm beyond graph representations (see,
Fig. 2, Tab. 1).

(2) We introduce CSCD-M, a realization of CSCD for
meshes that operates upon the intrinsic triangulation of
mesh. This is the first method to operate on intrinsic tri-
angulation offering robustness by construction. CSCD-
M performs comparable or better than LS and is ~ 60%
faster, on average, on our set of meshes of varying sizes
and complexity (see Tab. 6).

N
<N iStage 2
% ! B ’ e oo
|
Scoring and Pruning Local
Separators using Set Packing
|
oo oo
Distance Field -
& Cut Loci Assign Neighbour
Regions
/\\
BN NN
/ Compute /
'\ Nodes, \
1 ™
23 | él 1S
A
Voronoi Regions Skeleton Nodes
Final LS
J

Stagel
Geodesic
Distance
Input:
3D Object
. Qﬂ"*
Input Point ?Se? S
Optimize
LS
Sample
{p17p27 ce apN} AppI‘OX. LS
p
. Curve
Curve Shortening Shortening +
Algorithm:
(Edge Flip, —» T
L-BFGS
Optimization)

Domain
Projection
N\

Locality
Constraints

N

Output:
Curve Skeleton

Figure 3. [Schematic of CSCD for Curve Skeletonization]. The entire Curve Skeletonization framework can be divided into two stages.
In Stage 1, we calculate the various local separators given the 3D object as input(input can be a mesh or a point cloud). Once we have
a sampled point, we calculate the geodesic distance to all other points and find the cut loci of the point to identify the target cut locus.
Then an approximate local separator (LS) is constructed, followed by the LS optimization. The optimization is specific to the particular
representation and is in the presence of a locality constraint. In Stage 2, we calculate the skeleton from the set of local separators. First,
we prune and pack the previously obtained separators. Based on the obtained separators, we divide the object into Voronoi regions. These
regions correspond to nodes, and neighbouring regions are connected to give the skeleton. Post-processing is finally performed to convert

cliques to stars in the resultant skeleton.

(3) Capitalizing on the generality of CSCD, we also intro-
duce CSCD-PC, a realization of CSCD to point clouds.
As a crucial component of our framework, we adapt and
improve upon existing cut locus identification strategies.
For CSCD-M, we develop an intrinsic formulation of the
algorithm, leading to improved robustness on poorly tri-
angulated meshes. For CSCD-PC, we introduce a novel
cut locus identification strategy tailored for point clouds
(see. Fig. 7a, Fig. 7b and Appendix. G).

Finally, we demonstrate that our framework can be min-
imally modified to approximately identify handles, tun-
nels, and constricting loops, thereby extending its appli-
cability beyond skeletonization (see App. Fig. 22). Our
improved skeletonization yields better results for down-
stream applications, (App. Fig. 21, Tab. 4). See, App. L.

“

&)

2. CSCD

2.1. cscb Framework

CSCD is a framework for local separators based skeletoniza-
tion on manifolds. Our method takes a shape X € R3 as
input, where X can be any 3D representation with discrete
differential operators (Eg., gradient and Laplace-Beltrami).
Our goal is to generate a curve skeleton C' from the input.
Our framework comprises two stages: (1) Finding a set
of local separators that divide the manifold locally into two
halves; (2) scoring and selecting an optimal set of non-
overlapping separators through set-packing. We then assign
the nearest region of the shape to each local separator, cal-
culate centroids to obtain skeleton nodes, and connect nodes
of neighboring regions. Finally, we remove cliques to form
the curve skeleton. Refer to Algorithm 1 for further details,

Algorithm 1 CSCD Framework (Detailed alg. in Supple-
mentary B)

Input: A 3D object O

Output: The curve skeleton of O as C
1: P < set of points on surface S
2: forp € P do
3: D < geodesic distances f(p,S)
4 C' < cut-locus mask f(D,S)

5: t + target cut locus from (C, D, p, S)

6

7

8

9

[+ traced path from ¢ to p
l < locally optimized separator from [
: end for
L+ {ll,...,l‘p‘}
10: M < overlap map where M; ; = 1 if loops ¢, j overlap
11: L < separators after packing (M, L)
12: R < nearest region assignments f(L,S)
13: N < node positions f(R,S)
14: E « edge connectivity f(R,S)
15: (N, E) « clique-cleaned graph from (N, E)
t6: C < (N, E)

t Tar
get
Cut Locus
Approx
Path > . Local
S l Separator
Approx
Path
Source Point
Figure 4. [Illustration of a local separator.] The ver-

tex is the source s, the vertex is the target cut locus ¢
(Sec. 3.1.2). The two paths [(red and) are the approximate
paths (Sec. 3.1.4), and the curve [is the final local separator
(Sec. 3.1.5). See Sec. M for Terminology/definitions.

where, f(-) denotes functions specific to each step.

2.2. Stage 1: Local Separator Construction

An ideal local separator is a locally short path that divides
the surface into two halves with the following properties:
P1: The separator goes around geometrical features (protru-
sions) rather than simply dividing the local surface.

P2: The separator is locally shortest within a defined locality.
To construct a local separator, we start with a source
point (Fig. 4) and calculate geodesic distances. Geodesics
are curves on the manifold that locally minimize distance,
i.e., generalizing straight lines to curved spaces. To satisfy
property P1, the separator passes through a cut locus of the
source. Cut loci are points on the manifold where mul-
tiple minimizing geodesics from the source intersect. At

cut loci, the gradient of the distance field is not defined and
the laplacian is +o00. For manifolds with boundaries, we
identify separator extremities as boundary points where the
sum of geodesic distance gradients cancels out, similar to
cut loci. In our implementations (Sec. 3), we omit this case.

One can visualize a circular wave emanating from the
source: when the wavefront meets a protrusion, it splits and
meets at the cut locus. The ideal local separator is the min-
imal loop connecting the wavefront split point to the cut lo-
cus and back. We construct these separators by optimizing
an approximate loop from the target cut locus to the source
through locally constrained curve shortening.

To create a set of local separators, we sample multiple
(say, IV) source points and repeat this procedure.

2.3. Stage 2: Constructing the Curve Skeleton

After obtaining potentially overlapping local separators, we
need to select non-overlapping ones to divide the object
into Voronoi regions. We score each separator and prune
them through greedy set packing [22]. From the final set
of non-overlapping separators, we identify neighboring re-
gions and calculate average positions of points within re-
gions to obtain skeleton nodes. We connect neighboring
regions to form skeletal edges and remove cliques (e.g.,
triangles formed by connecting three neighboring regions)
through iterative removal to create the final curve skeleton.

2.4.CSCD vs. LS

The LS procedure does not readily extend to continuous
manifolds. In particular, (1) growing the separator set is
non-trivial, as naively adding nearby points is inefficient
and diverges from the original method, and (2) the absence
of a clear neighborhood structure on manifolds complicates
stopping criteria. We address these challenges by propos-
ing a novel framework—a strict generalization of LS—for
continuous manifolds.

3. Realization of CSCD on meshes /point clouds

Building on the above framework, we propose a method for
both meshes (CSCD-M) and point clouds (CSCD-PC).

3.1. Stagel: Constructing Local Separators
3.1.1. Choice of the Geodesic Distance Method

We use the heat method for geodesic distance computation
due to its efficiency and accuracy [9], making it well-suited
for mesh and point cloud processing.

3.1.2. Identification of the Cut Loci

For both CSCD-M and CSCD-PC, we adapt the practical
cut locus algorithm from [30], as detailed in Appendix G.
The algorithm works by, starting from the farthest cut locus,
identifying the cut loci as a connected graph on the surface
of the mesh.

For cSCD-M, we adapt the algorithm for intrinsic trian-
gulation, ensuring robustness to poor meshing. All gradient
calculations in the procedure are restricted to the tangent
spaces of vertices and faces through barycentric interpola-
tion. Fig. 7a, Fig. 13 (in Appendix) compares our intrinsic
implementation with the original on a poorly triangulated
mesh.

For csScD-PC, we introduce a novel method for cut locus
identification on point clouds, with its reliability demon-
strated in Fig. 7b, Fig. 14 (in Appendix).

3.1.3. Selecting the Target Cut Locus

Following [2], we select
the target cut locus ¢ as
the one with the smallest
Euclidean distance to the
source s, ensuring that the
cut locus lies near a signif-
icant feature. Since intrin-
sic triangulation schemes
lack explicit vertex po-
sitions in R2, we also
test selecting ¢ using the
smallest geodesic distance
(see App. J.1).

3.1.4. Approximate Path Construction

For CSCD-M, we search the neighborhood of the target cut
locus for two incoming directions, separated by the cut loci
graph (inset).

For CsScD-PC, a similar strategy is fol-
lowed but with the additional requirement
that the gradient directions are opposite.

Two paths are constructed
by greedily following vertices
(or points) with the mini-
mum geodesic distance from
the source s, ensuring conver-
gence at s. In cases where
the paths meet at an interme-
diate vertex v, they are trun-
cated at v. The concatenation
of these paths forms a loop;
Fig. 4 shows the approximate paths in red and lime green.
The cut loci is visualized in yellow.

dir 2

3.1.5. Optimizing the Loop

At this stage, the approximate loop only satisfies property
P1. We aim to shorten the loop around the feature (see the
cyan loop in Fig. 4). For CSCD-M, this is achieved using an
edge flip procedure [39] in the intrinsic triangulation, while
for CSCD-PC, an optimization-based framework from [60]
is employed (see App. E and App. F).

3.1.6. Constraining the Loop
Simply shortening the
curve yields a local
geodesic loop that can
drift significantly from
the initial path. For ex-
ample, a loop drawn at
the bottom of a cone
may slide upward to-
ward the tip, which is
undesirable for curve
skeletonization.

Two observations
guide our constraint:
(1) the target cut locus
is selected based on Eu-
clidean proximity, and
(2) the final separator
should not lie farther from the source than the most distant
point on the approximate path. Thus, we apply a bounding
sphere constraint centered at the source s with a radius
equal to the Euclidean distance from s to the furthest point
on the approx. separator. In Fig. 5, with the constraint, the
optimized separator (dark blue) remains in place, whereas
without it the separator shifts upward (yellow).

In CSCD-M, the constraint restricts edge flips for vertices
outside the sphere. In CSCD-PC, it is imposed as an interior
point constraint in the optimization energy:

Figure 5. Constraint region for
the loop optimization procedure.
The green sphere shows the Eu-
clidean sphere constraint.

L= H(||lzi—zipa]2)+Y_ Aimax (0, [la; — 24, — 7)°,

i=1 i=1

(1
where x4, 7, and H denote the source point, the Euclidean
radius, and a kernel function, respectively.

3.1.7. Sampling the Separators

We avoid sampling regions that produce similar local sepa-
rators by employing an adaptive sampling technique based
on geodesic distances. The distance from each vertex to the
constructed separators and sampled points is computed. Re-
gions with larger distances are more likely to yield unique
separators. The probability for a vertex ¢ is given by p;
exp (d;) — 1, where d; is the minimum geodesic distance
from vertex ¢ to the existing separators and source points.
The exponential weighting tends to emphasize separators
around distant, sharp boundary features.

3.2. Stage 2: Constructing the Curve Skeleton

3.2.1. Scoring the Separators

We define a score for each separator to decide among over-
lapping candidates. Inspired by LS, a good local separa-
tor balances the two halves of the surface constraint region
mentioned in sec. 3.1.6. Instead of simply counting nodes,

we weigh based on the ratio of the surface areas of the two
components and penalize longer loops. The final score is
S; = Ajj,li‘-ili’ where Al,i and A27i (Wlth A27i > AL'L') are
the surface areas of the two components, and [; is the loop
length.

3.2.2. Pruning Bad Separators

Tiny separators that do not enclose a significant feature are
pruned using a length threshold 7 = 3 X d_ij, where d_ij is
the average edge length. Separators forming handles rather
than properly encircling features are removed by discarding
those whose centroids lie outside the 3D shape.

3.2.3. Packing the Separators

After scoring, set packing is performed to suppress overlap-
ping separators. We normalize the weights based on the op-
portunity cost of retaining one separator over another and
greedily select those with the highest normalized weights.
Separators that do not overlap are retained automatically.

For CSCD-M, overlapping separators are identified by
testing intersections of piecewise linear curves within each
face (See Supplementary Sec. C for Derivation on deter-
mining intersection within a face). For CSCD-PC, a dis-
tance threshold between points is used. With the selected
set of non-overlapping separators, we proceed to construct
the curve skeleton graph.

3.2.4. Assigning Regions

Neighboring regions of the object are assigned to each local
separator by computing the geodesic distance from every
vertex (or point) to each separator, followed by a Voronoi
partitioning.

(a) (b) (©)

Figure 6. Cliques in the armadillo hand and their removal. (a)
Original hand; (b) With cliques; (c) Cliques replaced by central
star-like nodes.

3.2.5. Constructing the Graph

The centroids of the regions form the nodes of the curve
skeleton graph. Nodes corresponding to neighboring re-
gions are connected. When a region neighbors more than
two others, resulting cliques are simplified by converting
them to a star formation, using the centroid as the central
node and removing redundant edges (see Fig. 6).

3.3. On the Discrete Nature of the Realizations

Manifold representations are inherently discrete in comput-
ers; thus, our realizations of CSCD are discrete and involve

tradeoffs similar to those in adapting geodesic paths (e.g.,
straightest vs. shortest paths). While LS relies solely on
node and edge data, our framework benefits from additional
face-level information for meshes, allowing for interpola-
tion across faces. In point clouds, local separators are con-
structed using dynamically computed neighborhood infor-
mation. Although the complete graph is not built initially,
many computations are reused, and techniques such as MLS
or tangent space smoothing can refine the cut loci and loop
approximations. For other discrete representations (e.g.,
digital surfaces), our method remains discrete, though it
could incorporate continuous-level corrections if available.

4. Results
4.1. Results of the Improved Cut Loci Identification

Practical Our
Cut Locus Instrinsic Version

(a) Mesh (b) Point Cloud

Figure 7. (a) Comparison of our (right) estimated cut loci (in
yellow) versus the previous approach (left) [30] (of source s) on
chair from ThingilOk. Note: Our adaptation generates ro-
bust output by selectively identifying points on the true cut loci,
thereby significantly minimizing false negatives; (b) our novel cut
loci identification algorithm applied to point clouds. Source point
is shown in black and the resulting cut loci are rendered as red
curves.

We show the results of our cut locus identification al-
gorithm in Fig. 7a and Fig. 7b. Our adaptation produces
robust output that selectively chooses the points on the cut
loci, thereby significantly reducing the false negatives. For
details see Appendix G.

4.2. Curve Skeletonization on Meshes

General performance of CSCD-M: We evaluate and com-
pare our method to [2, 3, 45, 46] on diverse objects
mostly from the Stanford 3D Library, Artec 3D Scans,
and ThingilOk datasets. Figs. 1 and 8 illustrate that our
curve skeletonization is topologically correct and faithfully
follows the object geometry. In comparison to ROSA
and MCF—which often miss key features—our method
(and LS) retains more details. Notably, our skeletons are
smoother and yield better-centered nodes without additional
smoothing; we suspect this is due to weighing centroid
computations with vertex and face areas. In the case of
Copper Key, our method uniquely captures the intricate
design (See Fig. 1 (b)).

ROSA

MCF LS

MSLS Ours

Figure 8. Qualitative results of our method: ROSA [45] struggles to capture mesh details, while MCF [46] produces overly smooth
skeletons. CSCD-M, LS [2] and MSLS [3] yield comparable results on meshes; however, our method correctly captures details, as seen on
the copper key. In fertility, our approach results in smoother skeletons compared to LS and MSLS.

Y
Y

Thingiyy 14395

(130
s
Y ¥
o

ingilD: 37358

Thi

Figure 9. Qualitative results of CSCD-M on ThingilOk. CSCD-
M performs well even on poorly triangulated meshes.

Performance on poorly triangulated meshes: Our intrinsic
triangulation scheme, based on the Integer coordinate sys-
tem [16], uses intrinsic edge flips to enforce Delaunay con-
ditions. As shown in Fig. 9, our method reconstructs skele-
tons effectively on such meshes; Tab. 5. Also see Fig. 18
for results on noisy meshes. Fig. 19.

MSLS Ours

Figure 10. CSCD-M and MSLS on a torus with holes. Left panel,
CSCD-M local separators on the torus — highlighting how the
separators go around the holes. Right panel, comparison of the
curve skeleton obtained by MSLS and Ours (CSCD-M).

Performance on meshes with holes: We evaluate on a torus
mesh with three holes—two partial and one fully discon-
necting the shape—as a controlled test case. Our method is
the only one to perform reliably (Fig. 10); LS fails to pro-
duce output; MSLS recovers incorrect topology.

Quantitative performance of CSCD-M: Due to the lack of
a standard quantitative metric for curve skeletonization, we
propose a reconstruction loss based on convolutional sur-
faces [42], where the error at vertex 7 is ¢; = minﬁe o llpi—

p||?, with p any point on the reconstructed mesh M (see
App. D). As shown in Table 2, our method outperforms LS,
likely due to smoother, more centered skeletons.

Inference times: Our method on average performs faster
than LS on our subset of objects ranging in different com-
plexities (see Table 3). For additional details see App. H.6.

4.3. Curve Skeletonization on Point Clouds

We demonstrate a proof-of-concept realization of CSCD on
point clouds (CSCD-PC), which captures detailed, well-
centered skeletons (Figs.11,12), outperforming ROSA,
CA++, and EPCS, which yield coarser skeletons with fewer
nodes.

Table 2. (Truncated) Convolutional Surfaces reconstruction er-
ror (x1073) for objects using skeletons from CSCD-M (Ours),
MCEF [46], LS [2] and MSLS [3]. Average is computed over the
subset here. Complete Table 5.

Object | LS | MSLS | MCF | cSCD-M (Ours)
Copper-key | 06.13 | 04.60 | 6.02 04.70
rocker—-arm | 26.30 | 24.40 | 25.30 24.90
neptune 04.16 | 04.82 | 10.62 03.80
TID:44395 | 09.56 | 10.70 | 16.80 10.07
TID:40987 | 09.29 | 09.81 | 11.36 08.32
TID:133568 | 04.75 | 05.49 | 05.51 04.99
Average | 10.03 | 9.97 | 12.60 | 9.46

Table 3. (Truncated) Runtime analysis (in secs.) for CSCD-M
(Ours), LS [2] (TOG’21) and MSLS [3]. Results are based on
N = 3K (with three cases using N = 4K due to mesh com-
plexity). LS times for gorilla are omitted from averaging due
to excessive computation time. Averaging is computed over the
complete table. Complete Tab. 6

Object | VI | |Fl | LS |MSLS |cSCD-M (Ours)
TID:44395 2948 | 5900 678 | 2.14 37.65
fertility 4494 | 9000 939 | 279 4143
TID:32770 20125 | 40246 | 1889.70 | 13.20 225.17*
gorilla 48762 | 97520 | > 24007 | 32.46 532.16
armadillo 49990 | 99976 | 994.75 | 33.70 495.33
garuda-vishnu | 49972 | 100084 | 292.43 | 30.13 609.30*
neptune 50000 | 100008 | 886.68 | 31.53 611.66"
Average | | | 47117 | 16.14 | 277.99

Table 4. Application I: Shape Classification: For subset of
classes from the Princeton Shape Benchmark dataset [41].

Metric | LS | MSLS | cscp-M
0.63‘ 0.74 ‘ 0.79

Accuracy

F1 Score | 0.59 | 0.76 0.80

4.4. Downstream Applications
4.4.1. Object Classification

We compare curve skeletonization methods for object clas-
sification on the Princeton Shape Benchmark [41]. A global
shape embedding is constructed via a histogram of the
Shape Diameter Function (SDF) [37], and the 1D Wasser-
stein distance between histograms is used for comparison,
ensuring robustness against discretization. Our method out-
performs contemporary approaches (see, Table 4).

4.4.2. Object Segmentation

We also evaluate our outputs for unsupervised object seg-
mentation using SDF [37], yielding consistent results robust
to pose variations (Fig. 21).

Note: App. for more results, ablations, downstream task.

5. Conclusion and Future Work

We introduced CSCD, a general framework for curve skele-
tonization on continuous manifolds that generalizes LS. Its
effectiveness is demonstrated through implementations on
meshes (CSCD-M) and point clouds (CSCD-PC). CSCD-M is
the first intrinsic curve skeletonization method and shows
robust performance across diverse meshes, with results that
are comparable or superior to the state-of-the-art LS. Mean-
while, CSCD-PC provides a compelling proof-of-concept
for the framework’s generalizability. Our realizations are
intended as starting points, with results on meshes and point
clouds. Future work could improve individual modules for
improved speed, robustness, and performance, or extend the
framework to other representations. We plan to release the
source code post acceptance.

Coverage Axis++

ROSA

Ours

Figure 11. CsCcD-PC vs ROSA [45] vs CA++
[Eurographics’24][53]: CA++ fails to generate a valid
skeleton (since it’s a MAT inspired algorithm). Our method
captures object details better, yielding more nodes and centered
skeletons compared to ROSA.

EPCS

Ours

Figure 12. ¢SCD-PC vs EPCS [CAG’23]: Our method captures
object details better, compared to EPCS [23]. In hand (left), our
skeleton is centered in the palm and shows skeleton consistent with
square shape. In deer (middle), we capture the snout and the tail.
In dino (right), EPCS fails to capture the curvature of the arm
completely while our skeleton follows the arm.

6. Acknowledgments

We would like to thank Rahul Narain for the insightful
initial discussions on shape representation, which laid
the foundation for this work. We would also like to
thank Cyrin Neeraj for his help on results presentation.

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu,
Daniel Cohen-Or, and Tong-Yee Lee. Skeleton extraction
by mesh contraction. ACM Trans. Graph., 27(3):1-10, 2008.
2,20

Andreas Barentzen and Eva Rotenberg. Skeletonization via
local separators. ACM Trans. Graph., 40(5), 2021. 1,2, 5, 6,
7,8, 10,20

J. Andreas Berentzen, Rasmus Emil Christensen, Emil
Toftegaard Gade, and Eva Rotenberg. Multilevel skele-
tonization using local separators. In Proceedings of the
39th International Symposium on Computational Geometry
(SoCG 2023), 2023. 2,6,7,8,5, 10, 20

Justin L Brown, Takuya Furuta, and Wesley E Bolch. A
robust algorithm for voxel-to-polygon mesh phantom con-
version. Brain and Human Body Modeling: Computational
Human Modeling at EMBC 2018, pages 317-327, 2019. 20
Jingliang Cheng, Xinyu Zheng, Shuangmin Chen, Guozhu
Liu, Shiging Xin, Lin Lu, Yuanfeng Zhou, and Changhe Tu.
Skeletonization via dual of shape segmentation. Computer
Aided Geometric Design, 80:101856, 2020. 2, 20

Y. Chu, W. Wang, and L. Li. Robustly extracting concise
3d curve skeletons by enhancing the capture of prominent
features. IEEE Trans Vis Comput Graph, 29(8):3472-3488,
2023. Epub 2023 Jun 29, PMID: 35324442. 2

David Coeurjolly and Jacques-Olivier Lachaud. A simple
discrete calculus for digital surfaces. In Discrete Geome-
try and Mathematical Morphology, pages 341-353, Cham,
2022. Springer International Publishing. 12

Nicu D Cornea, Deborah Silver, and Patrick Min. Curve-
skeleton applications. In VIS 05. IEEE Visualization, 2005.,
pages 95-102. IEEE, 2005. 2, 20

Keenan Crane, Clarisse Weischedel, and Max Wardetzky.
The heat method for distance computation. Commun. ACM,
60(11):90-99, 2017. 4,2, 19

Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng
Qin. A survey of algorithms for geodesic paths and distances.
ArXiv, abs/2007.10430, 2020. 19

Zhiyang Dou, Cheng Lin, Rui Xu, Lei Yang, Shiqing Xin,
Taku Komura, and Wenping Wang. Coverage axis: In-
ner point selection for 3d shape skeletonization. Computer
Graphics Forum, 41(2):419-432, 2022. 2, 20

Zhiyang Dou, Cheng Lin, Rui Xu, Lei Yang, Shiqing Xin,
Taku Komura, and Wenping Wang. Coverage axis: In-
ner point selection for 3d shape skeletonization. In Com-
puter Graphics Forum, pages 419—432. Wiley Online Li-
brary, 2022. 2, 20

Bastein Durix, Géraldine Morin, Sylvie Chambon, Céline
Roudet, and Lionel Garnier. Towards skeleton based recon-
struction: From projective skeletonization to canal surface
estimation. In 2015 International Conference on 3D Vision,
pages 545-553, 2015. 2

Shachar Fleishman, Daniel Cohen-Or, and Cldudio T. Silva.
Robust moving least-squares fitting with sharp features.
ACM SIGGRAPH 2005 Papers, 2005. 4

Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu,
and Jonathan Li. Nerf: Neural radiance field in 3d vision,

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

a comprehensive review. arXiv preprint arXiv:2210.00379,
2022. 1

Mark Gillespie, Nicholas Sharp, and Keenan Crane. Integer
coordinates for intrinsic geometry processing. arXiv preprint
arXiv:2106.00220, 2021. 7

Wooi-Boon Goh. Strategies for shape matching using skele-
tons. Computer Vision and Image Understanding, 110(3):
326-345, 2008. Similarity Matching in Computer Vision and
Multimedia. 2

Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong,
Hao Zhang, Guiqging Li, and Baoquan Chen. L1-medial
skeleton of point cloud. ACM Trans. Graph., 32(4), 2013.
2,20

Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 2
M.W. Jones, J.A. Baerentzen, and M. Sramek. 3d dis-
tance fields: a survey of techniques and applications. /EEE
Transactions on Visualization and Computer Graphics, 12
(4):581-599, 2006. 1

Ron Kimmel and James A Sethian. Computing geodesic
paths on manifolds. Proceedings of the national academy
of Sciences, 95(15):8431-8435, 1998. 2

David Kordalewski. New greedy heuristics for set cover and
set packing. ArXiv, abs/1305.3584, 2013. 4

Chunhui Li, Mingquan Zhou, Guohua Geng, Yifei Xie, Yuhe
Zhang, and Yangyang Liu. Epcs: Endpoint-based part-aware
curve skeleton extraction for low-quality point clouds. Com-
puters & Graphics, 117:209-221, 2023. 2, 8, 20

Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang,
and Wenping Wang. Q-mat: Computing medial axis trans-
form by quadratic error minimization. ACM Transactions on
Graphics (TOG), 35(1):1-16, 2015. 2

Chu-Hsing Lin, Changjian Li, Yuan Liu, Nenglun Chen, Yi-
King Choi, and Wenping Wang. Point2skeleton: Learning
skeletal representations from point clouds. 2021 I[EEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4275-4284, 2020. 2, 20

Bangquan Liu, Shuangmin Chen, Shi-Qing Xin, Ying He,
Zhen Liu, and Jieyu Zhao. An optimization-driven approach
for computing geodesic paths on triangle meshes. Computer-
Aided Design, 90:105-112, 2017. SI:SPM2017. 20

Marco Livesu, Fabio Guggeri, and Riccardo Scateni. Re-
constructing the curve-skeletons of 3d shapes using the vi-
sual hull. /IEEE Transactions on Visualization and Computer
Graphics, 18:1891-1901, 2012. 2, 20

Chenlei Lv, Weisi Lin, and Baoquan Zhao. Voxel structure-
based mesh reconstruction from a 3d point cloud. [EEE
Transactions on Multimedia, 24:1815-1829, 2022. 20
Shubh Maheshwari, Rahul Narain, and Ramya Hebbal-
aguppe. Transfer4d: A framework for frugal motion capture
and deformation transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12836-12846, 2023. 2

C. Mancinelli, M. Livesu, and E. Puppo. Practical computa-
tion of the cut locus on discrete surfaces. Computer Graphics
Forum, 40(5):261-273, 2021. 4, 6,2, 5

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Dimas Martinez, Luiz Velho, and Paulo C. Carvalho. Com-
puting geodesics on triangular meshes. Computers and
Graphics, 29(5):667-675, 2005. 20

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Commun. ACM, 65:99-106, 2020. 1

D Nicu, C Silver, and D Silver. Curve-skeleton properties,
applications and algorithms. [EEE Transactions on Visual-
ization and Computer Graphics, 13(3):530-548, 2007. 2, 20
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. 2

Dennie Reniers, Jarke van Wijk, and Alexandru Telea. Com-
puting multiscale curve and surface skeletons of genus 0
shapes using a global importance measure. [EEE Transac-
tions on Visualization and Computer Graphics, 14(2):355-
368, 2008. 2, 20

Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di
Baja. A survey on skeletonization algorithms and their appli-
cations. Pattern Recognition Letters, 76:3—-12, 2016. Special
Issue on Skeletonization and its Application. 2, 20

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consis-
tent mesh partitioning and skeletonisation using the shape
diameter function. The Visual Computer, 24:249-259, 2008.
8

Nicholas Sharp and Keenan Crane. A laplacian for nonman-
ifold triangle meshes. Computer Graphics Forum, 39(5):69—
80, 2020. 12

Nicholas Sharp and Keenan Crane. You can find geodesic
paths in triangle meshes by just flipping edges. ACM Trans.
Graph., 39(6), 2020. 5, 2, 4, 20

Nicholas Sharp, Keenan Crane, et al. Geometrycentral: A
modern c++ library of data structures and algorithms for ge-
ometry processing. github, 2019. 2

Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas
Funkhouser. The princeton shape benchmark. In Proceed-
ings Shape Modeling Applications, 2004., pages 167-178.
IEEE, 2004. 8

Alvaro Javier Fuentes Suarez. Modeling shapes with skele-
tons: scaffolds & anisotropic convolution. PhD thesis, CO-
MUE Université Cote d’ Azur (2015-2019), 2019. 7, 3

H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton
based shape matching and retrieval. In 2003 Shape Modeling
International., pages 130-139, 2003. 2

Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov,
Steven J Gortler, and Hugues Hoppe. Fast exact and approx-
imate geodesics on meshes. ACM transactions on graphics
(TOG), 24(3):553-560, 2005. 2

Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or.
Curve skeleton extraction from incomplete point cloud. ACM
Trans. Graph., 28(3), 2009. 2, 6, 7, 8, 10, 13, 20

Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and
Hao Zhang. Mean curvature skeletons. Computer Graphics
Forum, 31(5):1735-1744, 2012. 2, 6,7, 5, 20

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

[60]

Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo,
Nina Amenta, and Alexandru Telea. 3d skeletons: A state-of-
the-art report. Computer Graphics Forum, 35(2):573-597,
2016. 2, 20

G. Taubin. Geometric Signal Processing on Polygonal
Meshes. In Eurographics 2000 - STARs. Eurographics As-
sociation, 2000. 1

Julien Tierny, Jean-Philippe Vandeborre, and Mohamed
Daoudi. 3D Mesh Skeleton Extraction Using Topologi-
cal and Geometrical Analyses. In /4th Pacific Conference
on Computer Graphics and Applications (Pacific Graphics
2006), page slposter, Tapei, Taiwan, 2006. 2, 20

S.R. S. Varadhan. On the behavior of the fundamental solu-
tion of the heat equation with variable coefficients. Commu-
nications on Pure and Applied Mathematics, 20(2):431-455,
1967. 19

He Wang and Juyong Zhang. A survey of deep learning-
based mesh processing. Communications in Mathematics
and Statistics, 10, 2022. 1

Ningna Wang, Bin Wang, Wenping Wang, and Xiaohu Guo.
Computing medial axis transform with feature preservation
via restricted power diagram. ACM Transactions on Graph-
ics (TOG), 41(6):1-18, 2022. 2

Zimeng Wang, Zhiyang Dou, Rui Xu, Cheng Lin, Yuan Liu,
Xiaoxiao Long, Shiqing Xin, Taku Komura, Xiaoming Yuan,
and Wenping Wang. Coverage axis++: Efficient inner point
selection for 3d shape skeletonization. In Computer Graph-
ics Forum, page e15143. Wiley Online Library, 2024. 2, 8,
20

Udaranga Wickramasinghe, Edoardo Remelli, Graham
Knott, and Pascal Fua. Voxel2mesh: 3d mesh model genera-
tion from volumetric data. In Medical Image Computing and
Computer Assisted Intervention—-MICCAI 2020: 23rd Inter-
national Conference, Lima, Peru, October 4-8, 2020, Pro-
ceedings, Part IV 23, pages 299-308. Springer, 2020. 20
Shi-Qing Xin and Guo-Jin Wang. Efficiently determining a
locally exact shortest path on polyhedral surfaces. Computer-
Aided Design, 39(12):1081-1090, 2007. 20

Shi-Qing Xin, Ying He, and Chi-Wing Fu. Efficiently com-
puting exact geodesic loops within finite steps. IEEE Trans-
actions on Visualization and Computer Graphics, 18(6):
879-889, 2012. 20

Baorong Yang, Junfeng Yao, Bin Wang, Jianwei Hu, Yil-
ing Pan, Tianxiang Pan, Wenping Wang, and Xiaohu Guo.
P2mat-net: Learning medial axis transform from sparse
point clouds. Computer Aided Geometric Design, 80:
101874, 2020. 2, 20

Zipeng Ye, Yong-Jin Liu, Jianmin Zheng, Kai Hormann, and
Ying He. De-path: A differential-evolution-based method for
computing energy-minimizing paths on surfaces. Computer-
Aided Design, 114:73-81, 2019. 20

Na Yuan, Peihui Wang, Wenlong Meng, Shuangmin Chen,
Jian Xu, Shiqing Xin, Ying He, and Wenping Wang. A vari-
ational framework for curve shortening in various geometric
domains. /EEE Transactions on Visualization and Computer
Graphics, 29(4):1951-1963, 2023. 4

N. Yuan, P. Wang, W. Meng, S. Chen, J. Xu, S. Xin, Y. He,
and W. Wang. A variational framework for curve shortening

in various geometric domains. IEEE Transactions on Visual-
ization and; Computer Graphics, 29(04):1951-1963, 2023.
5,2,20

[61] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2

	Introduction
	CSCD
	CSCD Framework
	Stage 1: Local Separator Construction
	Stage 2: Constructing the Curve Skeleton
	CSCD vs. LS

	Realization of CSCD on meshes /point clouds
	Stage1: Constructing Local Separators
	Choice of the Geodesic Distance Method
	Identification of the Cut Loci
	Selecting the Target Cut Locus
	Approximate Path Construction
	Optimizing the Loop
	Constraining the Loop
	Sampling the Separators

	Stage 2: Constructing the Curve Skeleton
	Scoring the Separators
	Pruning Bad Separators
	Packing the Separators
	Assigning Regions
	Constructing the Graph

	On the Discrete Nature of the Realizations

	Results
	Results of the Improved Cut Loci Identification
	Curve Skeletonization on Meshes
	Curve Skeletonization on Point Clouds
	Downstream Applications
	Object Classification
	Object Segmentation

	Conclusion and Future Work
	Acknowledgments
	Implementation Details
	Pseduocode
	Derivation for determining intersection within a face of a mesh
	Evaluation metric
	Curve Shortening using Edge Flip framework
	Optimizing the loop
	Constraining the Loop

	Curve Shortening using optimization based framework
	Optimizing the Loop
	Constraining the Loop

	Our adaptation of the Practical Cut Locus Identification Method
	Our adaptation on intrinsic meshes
	Our adaptation on point clouds

	Additional results
	Complete Results
	Results on Complex Meshes
	Results on Meshes with Holes
	Results on Noisy Meshes
	Results on Mesh Resolution
	Timing Analysis of CSCD-M
	Additional Qualitative Results of CSCD-PC

	Downstream Applications
	Shape Classification
	Shape Segmentation
	Identifying Handles, Tunnels, and Constrictions

	Ablations
	Choice of Geodesic Distance vs Euclidean Distance
	Number of Local Separators calculated in Stage 1

	Discussions
	On the derivation of LS from CSCD
	On the multiscale version of CSCD-M

	Limitations and Future Work
	Terminology and Definitions
	Related Works

